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SUMMARY

The problem of the interaction between Ekman'’s classical boundary layer and that induced by a thermally non-
homogeneous site shows that the latter is strongly linked to the order of magnitude of the horizontal scale of the
site.

Our purpose is the analysis of the local interaction equations (Boussinesq equations) starting from a triple-deck
model. This analysis yields a system of quasi-linear equations for the viscous lower deck. The linear theory of
this system shows that the thermal non-homogeneity has a significant influence on the Ekman boundary layer
flow owing to the interactive nature of the triple-deck structure. The numerical solution of the quasi-linear
system confirms to a large extent this influence. The numerical results are given in grapl@fdi®87 by John
Wiley & Sons, Ltd.
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1. INTRODUCTION

In this article the interaction between an Ekman boundary layer and a local circulation induced by a
thermally non-homogeneous site is studied. A generalization of the work of Sigkéisis obtained.
This problem is concerned more particularly with meteorology. As a matter of fact, if we wish to
regionalize synoptic prediction, i.e. to be able to do local prediction, we have, among other things, to
elucidate how a site of horizontal scalgerturbs the Ekman layer. The consistent formulation of this
problem of the interaction between the Ekman boundary layer and that induced by a thermally non-
homogenous site turns out to be strongly linkedl tthe order of magnitude of the site. We notice for
L~ 10°m that an auto-inductive coupling triple-deck scheme developed independently by
Stewartson and Williafand Neiland has to be used. According to Zeytounfafgr the local
formulation we may then neglect the effect of the Coriolis force and proceed to the Boussinesq
approximatior?,

We begin by describing the triple-deck model obtained by ZeytoSriad analysing the equations
of the upper layer and the conditions for matching with the viscous lower deck. Then we analyse the
linearization of the viscous lower-deck equations. Finally we develop the numerical solution of the
non-linear problem and present the results in graph form.
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1212 R. KHARAB

2. TRIPLE-DECK SCHEME

In the following we consider a two-dimensional stationary problem. This is justified Whgof the
order of a few kilometres. We do not take into account the site. Our main purpose is to elucidate to
what extent the Ekman layer profile is perturbed by the presence of a thermally non-homogeneous
site on theX-axis betweerX=0 andX=L as shown in Figure 1.

We can write the following local interaction problem by using the Boussinesq approximation
according to Zeytouniah:

* ou* . ou* lorn*

R @
ow* ow* lon* 6

e W S gy O = AW @

ou*  ow*
e T 3
ox*  oz* ’ @)

00* a00* -1 dT
W W g O (y T >W* = frAxo%, (4)
z=0

with the boundary conditions

u*=w*=0, 0*=AF(X), 0<x<1, atz*x=0,
Z*
u* - U, (—) (wW*, n*, 0*) — 0, for x* > —o0.

p

Heref is a small perturbation parameter linked with the Ekman boundary layer, whose expression is

®)

2Ro
fr= gt T (6)

L2Q,sinp, Re

where
LU U
Re=—2 and Ro=-—020 — (7)
Vo 2LQy sin ¢
0=AF(x) 0-0
(4} 1 x

Figure 1. Schematic diagram of flow geometry and co-ordinate system
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are the local Reynolds and Rossby numbers respectively, basedodyv,, with v, the kinematic
viscosity of the atmosphere. We have
z X u w
* =, X* ==, U, w*) = { —,—). 8
5 5 (u*, w*) (uo uo) (8)
n* and 0* are the pressure and temperature perturbations respectively and A are similitude

parameters of order unity:(x) is given: it is the temperature distribution on the surface of the local
site. Finally,U, is the Ekman longitudinal speed profile in the non-dimensional form

U,=1- exp(— %) cos(%), 9

. z* dT
@) roe
andy is a constant equal to the adiabatic index. Wifer 0, the local problem (1)—(5) consists of

the study of three vertical scales, at least in the self-inductive coupling scheme corresponding to
m = 5 (Figure 2). The valuen = 5 is the same as the one used by Srithhis study of the linear

flow over a small ‘hump’ on a plane plaque. This work has been generalized to the three-dimensional
case by Smithet al® with m = 5. Finally, Sykes has used the preceding results to analyse the
stratification effects on a Boussinesq fluid in the boundary layer flow over a small mountain whose
spread is of the order of-3 km and maximum height 60 m.

with

’

7¢=0

Middle deck
In this deck we have the asymptotic representation
u* = U, (2) + B + O(8%), w* = fAW + O(f°), (10)
w* = 27+ O(5%), 0* = B0 + O(5*),
wherez = Z/f. The components andw satisfy the classical system
_ou dUg
U@ +—5 W=0. (11)
au 0w
—+—==0, 12
X + oz (12)
T
Upper deck ' z
Middle deck ' 1z=7/B
Lower deck ' . , 2=7/p’
¥ v ¥
0 1 x

Figure 2. Definition sketch of asymptotic regions and stretched vertical co-ordinates for triple-deck analysis
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whose solution is

dU, _ dA -
T W= _&Uoo(z)’ (13)

where the functiorfA(x) should be interpreted as a thickness displacement which, as a matter of fact,
generates the pressure perturbation.

Lower deck

u* = i + O(B?), w* = AW + O(B*),
n* = B+ OB, 0* = 0+ O(p).

Substituting these expressions in (1)—(5) and retaining only comparable terms, the following system
is obtained’

(14)

a0 S(P a0, 1P 3%
0—4+W—+- —dz+-—= , 15
8x+ 82+yLo ox yox 022 (15
a0 oW
Z4+"_-0 16
8x+82 ’ (16)
2 ~
ﬁ:éj 0dz + P(x), a7)
oo
0 90 1%
Y PV E T hroe (18)
with the boundary conditions
0=w=0, @:AF(X), 0<x<1, atzx=0,
0—2 (WP, 0 —0 forx— —oo,
dA -
0 24AK, W 250, 00, fora— oo, (19)

d
A(=00) = P (~00) = 0.

The strong singular self-induction arises because the problem (15)—(18) to be solved in the lower
viscous layer does not accepx) as data known prior to the resolution (as is the case in classical
boundary layer problems). It has to be calculated simultaneously with the velocity compomets
w and the temperature perturbation

It should be emphasized, however, that this pressure perturli(ipis not completely arbitrary.
It is connected to the functioA(x) in a manner determined by the analysis of the upper deck flow.

Upper deck
In this deck we formulate the asymptotic representation
u* = 1+ i+ O(f%), w* = W + O(f%),
n* = f7 + O(5%), 0* = 20+ O(B°). 0

INT. J. NUMER. METH. FLUIDS, VOL24: 1211-1223 (1997) © 1997 by John Wiley & Sons, Ltd.



LINEAR THEORY FOR EKMAN’'S BOUNDARY LAYER

We then obtain the following linear system foyw, 7 and 0:

80+_18ﬁ__0
X ypox
oW lom o~
—+-—=-0,
ox yoz vy
ol om

au _7f=Oa
ox 0z

)v”v =0.
z=0

30 y—1 dT
T s habl=]
oxX < Y + dz

1215

(21)

(22)

(23)

(24)

Eliminating all these functions exceftx, 7) in (21)—(24) yields the following Helmholtz equation

for
¥ P L\ om
_ 4 =~ _0
<8x2 o +“°> x
where
o (y —1 dT )
2 0
w=—-\—+— > 0.
Ty A
At Z = 0 the solution (25) must verify
dA
T 0 = P W 0 = ——
G0 =PX). W 0) =~
ie.
3 (o7 (29 d°A
ax \ox ,_o)  \Moax T ad )’
If 7*(k, z) denotes the Fourier transform ofx, z), i.e.
00 -
*(K,z) = J (X, z)e~™*dx,

we obtain the solution of (25)—(27) as
n*(k, z) = P*(k)e'™,

where

ik — )", Ikl < o,
(3 — kA2 k| < pp.

(25)

(26)

(27)

(28)

(29)

(30)

From (27) and (28) we obtain the following relation betwee€itk) andP*(k) in the Fourier plane

im P*(k)
A*(k) = — .
=g

(31
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3. LINEAR THEORY

First note that equations (15)—(19) and (31) are almost identical with those obtained by Bykes
order to study the effects of stratification due to the boundary layer flow over a small mountain. The
only differences are that in equations (15)—(19) there is no effect of the normal velocity component
and that the supplementary term governing the temperﬁy(@@/ax) dZ in equation (15) describes
the quantity of motion. .

More precisely, problem (15)—(19) with constraint (31) is equivalent to Sykes’ problenmfwith,
which is equivalent to assumimy = 0. In this case we have to introduce at least a contour and write
the adherence conditions an= h(x), taking into account the parameter in the foym= hy/L = B2,
whereh, = max |h|. If no hypothesis is made on the similitude paramdteproblem (15)—(19) with
(31) is still non-linear and can only be solved numerically.

The linearization of system (15)—(19) with (31) consists of assuming 1 and finding the
solution in the form

0 =24 Au+ O(A?), W, 0,A,P,) = AW, 0, A, P). (32)

Substituting this in (15)—(19) and (31) and retaining only terms of his first ordAr, ime obtain the
linear system (after deleting the ‘hats’)

au 5+ 30 19P &
= 2 Zdzae—="— 33
uax+w+yLo X Z+y8x 072’ (33)
au ow
—+—=0, 34
ox + oz (34)
0 130
“x  Pra 35
with the boundary conditions
u=w=0, 0=F®X), 0<x<1, atz=0,
w,P,0,P) > 0, forx— —oo,
u—AX), w-— —Zd—A, 00— 0, forz— oo, (36)

dx
dA
A(—o0) = &(—oo) =0.

To solve problem (33)—(36), we shall assume that 1 andPr = 1.
Using Fourier transform with respect ¥ we obtain the following equation for the temperature:

?0* .
?(k, z) — ikz0*(k,z) = 0, 37)
which has the solution
1 o0 - n1/3 i
== | Ak 2)F*k)e™dk
00,0 = 5aigy | A0 D08k, (@)
whereAi is Airy’s function of the first kind and? = —1.
From (33) we obtain fou*(k, z)
Bu*  au* 1F*Kk) 13
=t = S A(D), t = (ik)%z, 39
g ot~ 7 A0 1(®) (ik)"~z (39)
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whose general solution is

u*(k, z)_C(k)J Al((lk)l/sz)dz+ (9*(k 2) — F*(k)), (40)
where
*(k
C(k)_s'm P (|22+ F(K). (41)

Using the other boundary conditions, we obtain the expressions for the prézglipeand the
displacement thickness*(k):

Prl) = o ) , “2)
o 43(ik)Y 4 im/ (u — k?)
im DF*(k)
P P — 3)
7 o= 433K) (43 — k2) +im
with
x = (—3Ai(0))** = 0-8272, D = (3Ai(0)o*%)~t = 0-382,
wherem is determined by relation (30).
Results
The asymptotic behaviour &(x) for large values ok, i.e. forx > 1, is given by
D
AX) ~ 5 F(). (44)

Figures 3 and 4 represent the graphsPef) and A(x) computed numerically using FFT for a
temperature profile defined by

(1—x2?% X <1,

0, X > 1 49

F(x) = {

where we chose, = 0-0 and 20

4. NUMERICAL MODEL

When A = O(1), system (15)—(19) with constrain (31) is non-linear and can only be solved
numerically. We apply the finite difference method with a Crank—Nicolson scheme, using a non-
linear relaxatior® for each space step and an initialization of the funcigr) starting from the
linear theory. This method is the same as used by Sykeshe boundary layer flow over hills. The
computation ofu;,, ; and 0;,, ; at the point(xi,4,z) is done in three stages, using the values of
Ui_1j» Ui j» 0i_1,j @and0; ; which are known foj =1,...,N.

The computations are almost identical with those of SYlkesl we indicate only the approxi-
mation of the terms wher@ intervenes.
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Pressure perturbation
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Figure 3. Pressure perturbation from linear case wijtk- (3a) 00 and (3b) 20

Stage 1

Starting from equation (15), we elaborate an explicit method to conputg ;, a first estimate of
the speed. The terid = (1/«,»)[ (00/0x) dz is approximated by trapezoidal rule, using a backward
difference formula foro0,/ox, i.e.

0zl

b 5xy (Z O —0i_1)+30; 5 — 0il,j))‘ (46)

INT. J. NUMER. METH. FLUIDS, VOL24: 1211-1223 (1997) © 1997 by John Wiley & Sons, Ltd.



LINEAR THEORY FOR EKMAN’'S BOUNDARY LAYER 1219

Displacement A(X)
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Figure 4. Displacement from linear case wijth=(4a) 00 and (4b) 20

The value oftij, , ; which we obtain is used to compute a first estirrfagq/z,j of the temperature
starting from (18):

Uj 1 1\ Ui j 0z - Oijy1—0ij1
<5 + Proz2 Oiy1/2.5 = aei—l/z,j =\ Wi jo12 + &(Ui—l/z,j — Uig1/2.5) T os7

1
+ E(Qi,ﬁl —Oi_1y2,j + 0ij-1)s (47)
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1220 R. KHARAB

where the vertical speed is computed from the continuity equation

oz i1 .
Wij-172 =5 rZZZ (Ui—1y2,j — Uiz, )- (48)

Stage 2

Here the values dfj;; | and@mm are used to obtain first estimates of the spéed, ;, and the
temperaturef;, j, at the point(x;, 4, z;). This step and the previous one are identical. It is sufficient
to replacei by i +1/2.

Stage 3

In this last stage an explicit scheme and the valu€s.gf; andém,j are used for calculating, ;
andb;,, j. Having computed the term,, ;, we determing);,, ;. The temperature equation can then
be put in the matrix form

CO=D, (49)

0= (0412, Oi_an-1), (50)

whereC is a tridiagonal matrix.
We end by determining the pressure field and the new displacemenifetdting from (31). The
adjustment of the displacement fieddis given by

AP = (1 — o)A + oA, (51)
where0 < « < 1.° The iteration is complete when

max |AFIC — A% < 5 x 10° max |A). (52)
! i

5. ANALYSIS OF NUMERICAL RESULTS
In this section we present the numerical results for a temperature profile given by

AL —x2?, X <1,

F(X):{o X > 1. (53)

Figure 5 illustrates the pressure perturbation and displacement perturbation for various values of
the parameterd and y,. We notice that the graphs &(x) above the thermally non-homogeneous
site are concentrated in the domé&ih< 1 and that the minima are negative and located on the same
straight line. The pressure of the thermally non-homogeneous site in the flow produces a separation
which varies in a regular way. This phenomenon is the same as that observed by Sglkesmatter
of fact, these results are the same as those by linear analysis.

Figure 6¢ presents the perturbation of the temperai(«g z) for x, fixed in[—1, 1], o = 3-0 and
A = 2.0. The various plots obtained constitute a good illustration that the temperature profile is
perturbed within the thermally non-homogeneous site. Figure 6¢ shows the temperature perturbation
with respect toz for values ofx, between—0-30 and G30 with a step of A.2. Figures 6a and 6b

INT. J. NUMER. METH. FLUIDS, VOL24: 1211-1223 (1997) © 1997 by John Wiley & Sons, Ltd.
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Pressure perturbation
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Figure 5. Pressure perturbation and displacement perturbation from numerical solution with (58-5&d), i, = 2-0, (5b,
5bb) A =1, yy = 3:0, (5¢, 5¢cc)A = 2.0, g = 2:0 (5d, 5dd) andA = 2.0, u, = 3-0 for ox = 0-06, oy = 0-08, M = 256 and
N=60

present the temperature perturbation as a functionasfdz for different values of the parameteis

and .
All these figures illustrate very clearly the effects of a thermally non-homogeneous site on the basic

flow.

6. CONCLUSIONS

The linear analysis allows the initialization of the iterative process utilized for the numerical solution
of system (15)—(18) when the parameter= O(1). The results show that the presence of a thermally
non-homogeneous site has a significant influence on the flow of Ekman’s classical boundary layer
owing to the interactive nature of the triple-layer structure. It should also be noted that the results

tally with those obtained by Sykésvhen = 0 andm = 5.
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Temperature perturbation
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Figure 6a,b. Three-dimensional temperature perturbation from numerical solution with\ (&&)-0, uy = 3-0 and (6b)
A = 3.0, yy = 2-0 for éx = 0-06, oy = 0-08, M = 256 andN=60

Temperature perturbation

3 T T T T T T T T T

: fig. 6¢c

Figure 6¢. Curves of temperature perturbatiigr, z) for fixed x, = —0-30, ..., 0-30 with respect taz, with A = 3.0 and
fo =20
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